Design and implementation of a modular interior-point solver for linear optimization

Abstract

This paper introduces the algorithmic design and implementation of Tulip, an open-source interior-point solver for linear optimization. It implements a regularized homogeneous interior-point algorithm with multiple centrality corrections, and therefore handles unbounded and infeasible problems. The solver is written in Julia, thus allowing for a flexible and efficient implementation: Tulip’s algorithmic framework is fully disentangled from linear algebra implementations and from a model’s arithmetic. In particular, this allows to seamlessly integrate specialized routines for structured problems. Extensive computational results are reported. We find that Tulip is competitive with open-source interior-point solvers on the H. Mittelmann’s benchmark of barrier linear programming solvers. Furthermore, we design specialized linear algebra routines for structured master problems in the context of Dantzig–Wolfe decomposition. These routines yield a tenfold speedup on large and dense instances that arise in power systems operation and two-stage stochastic programming, thereby outperforming state-of-the-art commercial interior point method solvers. Finally, we illustrate Tulip’s ability to use different levels of arithmetic precision by solving problems in extended precision.

Publication
Mathematical Programming Computation

The recording of my presentation at JuMP-dev workshop 2020 (online)

Mathieu Tanneau
Mathieu Tanneau
Research Engineer

I’m interested in mixed-integer linear and nonlinear optimization, power systems, and the integration of machine-learning techniques in optimization algorithms.