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Simplex vs IPM

Simplex
- Many cheap iterations
- Extreme (basic) points

Interior-Point
- Few costly iterations
- Interior points
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The “barrier" approach

1D example *°
How can we solve min{x € R | x > 0}7?
Define
F.(x) =x — 1t In(x)
—~—
“barrier”
If 1> 0 is small, then f,(x) ~ x.
We have (for x > 0)
! 1 !
f“(x):l—/l,; — fi(x)=0&x=p
f'(x) = )/(—12 — f, is convex!
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1D example

f, =x— 11In(x)

f.(x)
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The “barrier" approach
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2D example

How can we solve

min  2x; + 3x»
X

s.t. X1+x2=1,

X1, X2 Z 0
Barrier problem:

min  2x; + 3xo — plnxy — plnxs
X

s.t. xX31+xpx=1,

— no easy closed-form solution!
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O@0000

2D example
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Figure: 1 =1.0
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2D example

Figure: 1 =10.8
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The “barrier" approach
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2D example
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2D example
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Figure: 1 =10.2
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The “barrier" approach
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2D example

X1

Figure: 1 =0.1
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The “barrier" approach
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Central path

Original problem (LP)

min ¢'x

X

s.t. Ax=b
x>0

Barrier problem (convex)

n
min c'x—p g In(x;)
X
j=1
——
barrier

s.t. Ax=0b

As /i goes to zero: the sequence of x,, defines a central path

Mathieu Tanneau ESI6417: Interior-point methods - March 2, 2021



Central path
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Theory of IPMs
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Closing the gap

Primal-dual pair of LPs

(P) min c'x (D) max bTy
X E
st. Ax =b st. Aly +s =c
x >0 s >0

KKT optimality conditions:

Ax = b [primal feas.] (1)

ATy +s=c [dual feas] (2)
Vi, xj-s; =0 [slackness] (3)
X, >0 (4)
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Theory of IPMs
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Closing the gap

Barrier problem
min  f,(x)
X
s.t. Ax=b

At the optimum: V£, (x) = ¢ — 11 = ATy for some y € R™.
(Vf, and gradient of constraints are linearly dependent)

Let s; = 11/x;, we have

Ax = b,

ATy +s=c,
Xj-sj=/, j=1,..,n

x,s > 0.

Mathieu Tanneau ESI6417: Interior-point methods - March 2, 2021



Theory of IPMs
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Newton’s method

Newton's method for solving f(x) =0

Start from xp

Q@ X1 = Xp — f(XO)
T o)
o ...
f(xn
® Xntl =~ f’((x ))

until £(x,) ~ 0.

At each iteration:

0= f(xn) + (Xnt1 — Xn) XF'(xn)
————

Ax
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Theory of IPMs
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Newton’s method

Newton's method for solving f(x) =e*—1=0

f(x) 4
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Newton’s method

Idea: apply Newton method to the KKT system (1)-(4)

Ax—b
F(x,y,s):= | ATy+s—c
XSe — e

so that (1)—(4) & F(x,y,s) =0.
Newton direction A given by

A 0 O Ax b — Ax

0o AT | Ay | =] c—ATy—s (5)

S 0 X As e — XSe

—_—— ~——
VF(x,y,s) A —F(x,y,s)
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Theory of IPMs
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Predictor-Corrector Algorithm

Affine-scaling direction (predictor) given by

A 0 0 Ax b — Ax
0o AT | | Ay | = c—ATy—s
S 0 X As —XSe

Centering direction towards /i-center given by

A 0 0 Ax b — Ax
0 AT | || Ay | =] c—ATy—s
S 0 X As —XSe+ e

Predictor-Corrector algorithm: combine the two
@ Predictor step: make progress towards optimality (decrease /1)

o Corrector step: improve centrality (stay close to central path)
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Theory of IPMs
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Predictor-Corrector Algorithm

Mehrotra's Predictor-Corrector algorithm [Mehrotra, 1992]
Predictor step A

A 0 0 Axaf b — Ax
0 AT | || Ay | =] c—ATy—s
S 0 X As —XSe

Centering-corrector step A<

A 0 0 Axce 0
0 AT | || Ay© | = 0
S 0 X Asce ope — AX3F ASAH

1
w= fXTS, Haff _ 7(X + aaffAXaff)T(s + aaﬂ‘Asaﬂf)7 o= (Maff/lé)3
n n

Combined direction:

A = Aaff + ACC
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Theory of IPMs
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Predictor-Corrector Algorithm

Affine-scaling (full)
Affine-scaling (damped)
Corrector

Predictor-corrector step

Figure: Mehrotra's Predictor-Corrector, in x space
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Theory of IPMs
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Wrap-up

@ LP in standard Primal-Dual form

(P) min cTx (D) max bTy
s.t. Ax =b st. ATy +s =c
x >0 s >0

@ IPMs apply Newton's method to the KKT conditions

Ax=b, x>0, [primal feas.]
Aly+s=c, s>0, [dual feas.]
Xj-sj=p, Vj [slackness]

— solve a few linear systems
@ Polynomial-time algorithm (see [Wright, 1997])
@ Very efficient on large-scale problems
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Linear Algebra in IPMs
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Motivation

At each IPM iteration: solve a (large) linear system

0 AT | Ax &d
A 0 0 : Ay = fp
S 0 X As gxs

— typically 60—90% of total time!

Two ways to make an Interior-Point faster:
@ Reduce the number of iterations (better algorithm)

@ Reduce the time per iteration (better linear algebra)
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Linear Algebra in IPMs
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Motivation

Initial Newton system:

0 AT | Ax £y
A 0 0 | Ay | = &p
S 0 X As §xs

Substitute As to obtain the Augmented system
-ot AT . Ax _ gd - X_lgxs
A 0 Ay | L&
As = X7 & — SAX)
where © := XS~!
:( Left-hand matrix is indefinite (though regularization can be used)

:( Still costly to solve
:) More handy if free variables and/or non-linear terms
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Linear Algebra in IPMs
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Motivation

Substitute Ax to obtain the Normal equations

(AOAT)Ay = &, + AB(Eg — X )
Ax = @(ATAy - gd + X_lfxs)
As = X7 Y(&s — SAX)

1) AGAT is symmetric positive-definite...

:( ... but dense if A has dense columns

= We now focus on solving (AQAT)Ay = ¢
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Linear Algebra in IPMs
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Cholesky factorization

We want to solve

(AOAT) Ay =¢
S

S is symmetric positive definite,
we can compute its Cholesky factorization

S=1LxL"

where L is lower triangular with positive diagonal.
André Cholesky (X1895)

Available libraries: SuiteSparse, MUMPS, Pardiso, etc.

Mathieu Tanneau ESI6417: Interior-point methods - March 2, 2021



Cholesky factorization

Sparsity pattern of A

Mathieu Tanneau

Linear Algebra in IPMs

(o] le]e]
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methods




Linear Algebra in IPMs
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Cholesky factorization

Sparsity pattern of A Sparsity pattern of S

One dense column in A = AGAT is fully dense
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Cholesky factorization

Sparsity pattern of S Sparsity pattern of L

Cholesky factor L has more non-zeros than S — fill-in
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Wrap-up

Linear algebra in IPMs

Newton system — Normal equations — Cholesky

:) Numerically stable, parallelizable
1) Readily available implementations

:( Can consume a lot of memory

Other options:
- Exploit structure in A

- Iterative methods (e.g. conjugate gradient)
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Conclusion
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Hands-on: going through a barrier log
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Conclusion

Takeaway:
@ Polynomial complexity, efficient in practice
@ Robust behaviour: 20 — 30 iterations, regardless of problem size

@ Costly linear algebra, but well-suited to parallelism

Ongoing research:

@ Warm-start [Gondzio and Gonzalez-Brevis, 2015],
[Engau and Anjos, 2017]

@ Mixed Integer Programming
@ Parallelization [Gondzio and Grothey, 2009]
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Questions

Questions?
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e Beyond Linear Programming
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[ Je]

Mixed-Integer Linear Programming

Figure: Generate cut from centred point?
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Mixed-Integer Linear Programming

Figure
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Beyond LP
[ le]

Non-Linear Programming

(Convex) Quadratic Program:

(QP) min %XTQX+CTX
X
s.t. Ax=0>b
x>0

Augmented system for QP:

-Q-671 AT Ax | [ &a— X
A 0 ' Ay | &p
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Beyond LP
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Non-Linear Programming

(Convex) Non-Linear Program:

(NLP) mxin f(x)
s.t. g(x) <0

Augmented system for NLP:

Q/gx),(il) j‘é’;/): } ] [ 2; } _ [ —Vf(x) - Ax)Ty

where
A(x) = Vg(x)

Qlx,y) = V2F(x) + v, Vg(x)

i=1
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