Primal-Dual Interior-Point methods for Linear Programming (and beyond)

Mathieu Tanneau
Georgia Institute of Technology

March 2, 2021
(1) Foreword
(2) The "barrier" approach
(3) Theory of IPMs

4 Linear Algebra in IPMs
(5) Conclusion

6 Beyond Linear Programming
(1) Foreword
(2) The "barrier" approach
(3) Theory of IPMs
(4) Linear Algebra in IPMs
(5) Conclusion
(6) Beyond Linear Programming

Simplex

- Many cheap iterations
- Extreme (basic) points

Interior-Point

- Few costly iterations
- Interior points

(1) Foreword

(2) The "barrier" approach
(3) Theory of IPMs
(4) Linear Algebra in IPMs
(5) Conclusion
(6) Beyond Linear Programming

How can we solve $\min \{\mathbf{x} \in \mathbb{R} \mid \mathrm{x} \geq 0\}$?

Define

$$
f_{\mu}(\mathbf{x})=\mathbf{x}-\mu \underbrace{\ln (\mathbf{x})}_{\text {"barrier" }}
$$

If $\mu>0$ is small, then $f_{\mu}(\mathbf{x}) \simeq \mathbf{x}$.
We have (for $\mathrm{x}>0$)

$$
\begin{array}{ll}
f_{\mu}^{\prime}(\mathbf{x})=1-\mu \frac{1}{\mathbf{x}} & \longrightarrow f_{\mu}^{\prime}(\mathbf{x})=0 \Leftrightarrow \mathbf{x}=\mu \\
f_{\mu}^{\prime \prime}(\mathbf{x})=\frac{\mu}{\mathbf{x}^{2}} & \longrightarrow f_{\mu} \text { is convex! }
\end{array}
$$

$$
f_{\mu}=\mathbf{x}-\mu \ln (\mathbf{x})
$$

How can we solve

$$
\begin{array}{cl}
\min _{\mathrm{x}} & 2 \mathbf{x}_{1}+3 \mathbf{x}_{2} \\
\text { s.t. } & \mathbf{x}_{1}+\mathbf{x}_{2}=1, \\
& \mathbf{x}_{1}, \mathbf{x}_{2} \geq 0
\end{array}
$$

Barrier problem:
$\min _{\mathrm{x}} 2 \mathbf{x}_{1}+3 \mathbf{x}_{2}-\mu \ln \mathbf{x}_{1}-\mu \ln \mathbf{x}_{2}$
s.t. $\mathbf{x}_{1}+\mathbf{x}_{2}=1$,
\longrightarrow no easy closed-form solution!

Figure: $\mu=1.0$

Figure: $\mu=0.8$

Figure: $\mu=0.5$

Figure: $\mu=0.2$

Figure: $\mu=0.1$

Original problem (LP)

$$
\begin{array}{ll}
\min _{\mathrm{x}} & c^{T} \mathbf{x} \\
\text { s.t. } & A \mathbf{x}=b \\
& \mathbf{x} \geq 0
\end{array}
$$

Barrier problem (convex)

$$
\text { s.t. } \quad A \mathbf{x}=b
$$

As μ goes to zero: the sequence of \mathbf{x}_{μ} defines a central path

Figure: Central path - examples

(1) Foreword

(2) The "barrier" approach
(3) Theory of IPMs
(4) Linear Algebra in IPMs
(5) Conclusion
(6) Beyond Linear Programming

Primal-dual pair of LPs

$$
\begin{array}{rrrrrl}
\text { (P) } \begin{array}{rlrl}
\min _{\mathbf{x}} & c^{T} \mathbf{x} & & \text { (D) } \max _{\mathbf{y}, \mathrm{s}} \\
\text { s.t. } & b^{T} \mathbf{y} & \\
& & =b & \\
\text { s.t. } & A^{T} \mathbf{y} & +\mathbf{s} & =c \\
\mathbf{x} & \geq 0 & & \\
\mathrm{~s} & \geq 0
\end{array}
\end{array}
$$

KKT optimality conditions:

$$
\begin{array}{rlrl}
A \mathbf{x} & =b & & \text { [primal feas.] } \\
A^{T} \mathbf{y}+\mathrm{s} & =c & \text { [dual feas.] } \\
\forall i, \mathbf{x}_{i} \cdot \mathbf{s}_{i} & =0 & \text { [slackness] } \\
\mathbf{x}, \mathrm{s} & \geq 0 & \tag{4}
\end{array}
$$

Barrier problem

$$
\begin{array}{ll}
\min _{\mathbf{x}} & f_{\mu}(\mathbf{x}) \\
\text { s.t. } & A \mathbf{x}=b
\end{array}
$$

At the optimum: $\nabla f_{\mu}(\mathbf{x})=c-\mu \frac{1}{\mathbf{x}}=A^{T} \mathbf{y}$ for some $\mathbf{y} \in \mathbb{R}^{m}$. (∇f_{μ} and gradient of constraints are linearly dependent)

Let $\mathbf{s}_{j}=\mu / \mathbf{x}_{j}$, we have

$$
\begin{aligned}
A \mathbf{x} & =b \\
A^{T} \mathbf{y}+\mathbf{s} & =c \\
\mathbf{x}_{j} \cdot \mathbf{s}_{j} & =\mu, \quad j=1, \ldots, n \\
\mathbf{x}, \mathrm{~s} & \geq 0
\end{aligned}
$$

Newton's method for solving $f(x)=0$

Start from x_{0}

- $x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$
- ...
- $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
until $f\left(x_{n}\right) \simeq 0$.

At each iteration:

$$
0=f\left(x_{n}\right)+\underbrace{\left(x_{n+1}-x_{n}\right)}_{\Delta x} \times f^{\prime}\left(x_{n}\right)
$$

Newton's method for solving $f(x)=e^{x}-1=0$

Idea: apply Newton method to the KKT system (1)-(4)

$$
F(\mathbf{x}, \mathbf{y}, \mathrm{~s}):=\left[\begin{array}{c}
A \mathbf{x}-b \\
A^{T} \mathbf{y}+\mathrm{s}-c \\
X S e-\mu e
\end{array}\right]
$$

so that (1)-(4) $\Leftrightarrow F(\mathbf{x}, \mathbf{y}, \mathrm{~s})=0$.
Newton direction Δ given by

$$
\underbrace{\left[\begin{array}{ccc}
A & 0 & 0 \tag{5}\\
0 & A^{T} & 1 \\
S & 0 & X
\end{array}\right]}_{\nabla F(x, y, s)} \cdot \underbrace{\left[\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]}_{\Delta}=\underbrace{\left[\begin{array}{l}
b-A \mathbf{x} \\
c-A^{T} \mathbf{y}-\mathrm{s} \\
\mu e-X S e
\end{array}\right]}_{-F(x, y, s)}
$$

Affine-scaling direction (predictor) given by

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & l \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
b-A x \\
c-A^{T} y-s \\
-X S e
\end{array}\right]
$$

Centering direction towards μ-center given by

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & l \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
b-A x \\
c-A^{T} y-s \\
-X S e+\mu e
\end{array}\right]
$$

Predictor-Corrector algorithm: combine the two

- Predictor step: make progress towards optimality (decrease μ)
- Corrector step: improve centrality (stay close to central path)

Mehrotra's Predictor-Corrector algorithm [Mehrotra, 1992]
Predictor step $\Delta^{\text {aff }}$

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & l \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta x^{\text {aff }} \\
\Delta y^{a f f} \\
\Delta s^{a f f}
\end{array}\right]=\left[\begin{array}{c}
b-A \mathbf{x} \\
c-A^{T} \mathbf{y}-\mathrm{s} \\
-X S e
\end{array}\right]
$$

Centering-corrector step $\Delta^{c c}$

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{c}
\Delta x^{c c} \\
\Delta y^{c c} \\
\Delta s^{c c}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\sigma \mu e-\Delta X^{a f f} \Delta S^{a f f}
\end{array}\right]
$$

where:

$$
\mu=\frac{1}{n} \mathbf{x}^{T} \mathbf{s}, \quad \mu^{\text {aff }}=\frac{1}{n}\left(\mathbf{x}+\alpha^{\text {aff }} \Delta x^{\text {aff }}\right)^{T}\left(\mathbf{s}+\alpha^{\text {aff }} \Delta s^{\text {aff }}\right), \quad \sigma=\left(\mu^{a f f} / \mu\right)^{3}
$$

Combined direction:

$$
\Delta=\Delta^{a f f}+\Delta^{c c}
$$

-...... Affine-scaling (full)
\bullet Affine-scaling (damped)
-....... Corrector
\longrightarrow Predictor-corrector step

Figure: Mehrotra's Predictor-Corrector, in x space

- LP in standard Primal-Dual form

$$
\begin{aligned}
& \text { (P) } \min _{\mathrm{x}} c^{T} \mathrm{x} \\
& \begin{aligned}
\text { s.t. } \quad A \mathrm{x} & =b \\
\mathrm{x} & \geq 0
\end{aligned} \\
& \text { (D) } \max _{y} b^{T} y \\
& \begin{aligned}
\text { s.t. } \quad A^{T} y+s & =c \\
s & \geq 0
\end{aligned}
\end{aligned}
$$

- IPMs apply Newton's method to the KKT conditions

$$
\begin{aligned}
A \mathbf{x}=b, & \mathbf{x} \geq 0, & & \text { [primal feas.] } \\
A^{T} \mathbf{y}+\mathbf{s}=c, & \mathbf{s} \geq 0, & & \text { [dual feas.] } \\
\mathbf{x}_{j} \cdot \mathbf{s}_{j}=\mu, & \forall j & & \text { [slackness] }
\end{aligned}
$$

\rightarrow solve a few linear systems

- Polynomial-time algorithm (see [Wright, 1997])
- Very efficient on large-scale problems
(2) The "barrier" approach
(3) Theory of IPMs

4 Linear Algebra in IPMs
(5) Conclusion

6 Beyond Linear Programming

At each IPM iteration: solve a (large) linear system

$$
\left[\begin{array}{ccc}
0 & A^{T} & l \\
A & 0 & 0 \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
\xi_{d} \\
\xi_{p} \\
\xi_{\mathrm{xs}}
\end{array}\right]
$$

\longrightarrow typically $60-90 \%$ of total time!
Two ways to make an Interior-Point faster:

- Reduce the number of iterations (better algorithm)
- Reduce the time per iteration (better linear algebra)

Initial Newton system:

$$
\left[\begin{array}{ccc}
0 & A^{T} & l \\
A & 0 & 0 \\
S & 0 & X
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right]=\left[\begin{array}{l}
\xi_{d} \\
\xi_{p} \\
\xi_{\mathrm{xs}}
\end{array}\right]
$$

Substitute Δs to obtain the Augmented system

$$
\begin{aligned}
{\left[\begin{array}{cc}
-\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right] } & =\left[\begin{array}{l}
\xi_{d}-X^{-1} \xi_{\mathrm{xs}} \\
\xi_{p}
\end{array}\right] \\
\Delta s & =X^{-1}\left(\xi_{\mathrm{xs}}-S \Delta x\right)
\end{aligned}
$$

where $\Theta:=X S^{-1}$
:(Left-hand matrix is indefinite (though regularization can be used)
:(Still costly to solve
:) More handy if free variables and/or non-linear terms

Substitute Δx to obtain the Normal equations

$$
\begin{aligned}
\left(A \Theta A^{T}\right) \Delta y & =\xi_{p}+A \Theta\left(\xi_{d}-X^{-1} \xi_{x s}\right) \\
\Delta x & =\Theta\left(A^{T} \Delta y-\xi_{d}+X^{-1} \xi_{x \mathrm{~s}}\right) \\
\Delta s & =X^{-1}\left(\xi_{\mathrm{xs}}-S \Delta x\right)
\end{aligned}
$$

:) $A \Theta A^{T}$ is symmetric positive-definite...
(... but dense if A has dense columns
\Longrightarrow We now focus on solving $\left(A \Theta A^{T}\right) \Delta y=\xi$

We want to solve

$$
\underbrace{\left(A \Theta A^{T}\right)}_{S} \Delta y=\xi
$$

S is symmetric positive definite, we can compute its Cholesky factorization

$$
S=L \times L^{T}
$$

where L is lower triangular with positive diagonal.

André Cholesky (X1895)

Available libraries: SuiteSparse, MUMPS, Pardiso, etc.

Sparsity pattern of S

Sparsity pattern of A

Sparsity pattern of S

One dense column in $A \Longrightarrow A \Theta A^{T}$ is fully dense

Cholesky factor L has more non-zeros than $S \longrightarrow$ fill-in

Linear algebra in IPMs

Newton system \longrightarrow Normal equations \longrightarrow Cholesky
:) Numerically stable, parallelizable
:) Readily available implementations
:(Can consume a lot of memory

Other options:

- Exploit structure in A
- Iterative methods (e.g. conjugate gradient)
(2) The "barrier" approach
(3) Theory of IPMs
(4) Linear Algebra in IPMs
(5) Conclusion
(6) Beyond Linear Programming

Hands-on: going through a barrier log

Takeaway:

- Polynomial complexity, efficient in practice
- Robust behaviour: 20 - 30 iterations, regardless of problem size
- Costly linear algebra, but well-suited to parallelism

Ongoing research:

- Warm-start [Gondzio and Gonzalez-Brevis, 2015], [Engau and Anjos, 2017]
- Mixed Integer Programming
- Parallelization [Gondzio and Grothey, 2009]

Questions?

(1) Foreword

(2) The "barrier" approach
(3) Theory of IPMs
(4) Linear Algebra in IPMs
(5) Conclusion
(6) Beyond Linear Programming

Figure: Generate cut from centred point?

Figure: Central path is heavily affected by branching
(Convex) Quadratic Program:

$$
\begin{aligned}
(Q P) & \min _{\mathrm{x}} \\
\text { s.t. } & \frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+c^{T} \mathbf{x} \\
& A \mathbf{x}=b \\
& \mathbf{x} \geq 0
\end{aligned}
$$

Augmented system for QP:

$$
\left[\begin{array}{cc}
-Q-\Theta^{-1} & A^{T} \\
A & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
\xi_{d}-X^{-1} \xi_{x s} \\
\xi_{p}
\end{array}\right]
$$

(Convex) Non-Linear Program:

$$
\begin{array}{lll}
(N L P) & \min _{\mathrm{x}} & f(\mathrm{x}) \\
\text { s.t. } & g(\mathrm{x}) \leq 0
\end{array}
$$

Augmented system for NLP:

$$
\left[\begin{array}{cc}
Q(\mathbf{x}, \mathbf{y}) & A(\mathbf{x})^{T} \\
A(\mathbf{x}) & -Z Y^{-1}
\end{array}\right] \cdot\left[\begin{array}{l}
\Delta x \\
\Delta y
\end{array}\right]=\left[\begin{array}{l}
-\nabla f(\mathbf{x})-A(\mathbf{x})^{T} \mathbf{y} \\
-g(\mathbf{x})-\mu Y^{-1} e
\end{array}\right]
$$

where

$$
\begin{aligned}
A(\mathrm{x}) & =\nabla g(\mathrm{x}) \\
Q(\mathrm{x}, \mathrm{y}) & =\nabla^{2} f(\mathbf{x})+\sum_{i=1}^{m} \mathrm{y}_{i} \nabla^{2} g(\mathrm{x})
\end{aligned}
$$

園 Engau，A．and Anjos，M．F．（2017）．

Convergence and polynomiality of primal－dual interior－point algorithms for linear programming with selective addition of inequalities．
Optimization，66（12）：2063－2086．
R Gondzio，J．and Gonzalez－Brevis，P．（2015）．
A new warmstarting strategy for the primal－dual column generation method．
Mathematical Programming，152（1）：113－146．
目 Gondzio，J．and Grothey，A．（2009）．
Exploiting structure in parallel implementation of interior point methods for optimization．
Computational Management Science，6（2）：135－160．
围 Mehrotra，S．（1992）．
On the implementation of a primal－dual interior point method．
SIAM Journal on Optimization，2（4）：575－601．

Wright, S. (1997).
Primal-Dual Interior-Point Methods. Society for Industrial and Applied Mathematics.

