The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	

Primal-Dual Interior-Point methods for Linear Programming (and beyond)

Mathieu Tanneau

Georgia Institute of Technology

March 2, 2021

The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	

Foreword

- 2 The "barrier" approach
- 3 Theory of IPMs
- 4 Linear Algebra in IPMs

5 Conclusion

6 Beyond Linear Programming

Foreword	The "barrier" approach	Theory of IPMs	Linear Algebra in IPMs		
00					

1 Foreword

- 2 The "barrier" approach
- 3 Theory of IPMs
- 4 Linear Algebra in IPMs

5 Conclusion

6 Beyond Linear Programming

Foreword ○●	The "barrier" approach 0000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
Simplex vs IPM					

Simplex

- Many cheap iterations
- Extreme (basic) points

Interior-Point

- Few costly iterations
- Interior points

The "barrier" approach	Theory of IPMs	Linear Algebra in IPMs		
0000000000				

Foreword

- 2 The "barrier" approach
- 3 Theory of IPMs
- 4 Linear Algebra in IPMs

5 Conclusion

6 Beyond Linear Programming

	The "barrier" approach ○●○○○○○○○○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
1D example					

How can we solve $\min\{\mathbf{x} \in \mathbb{R} \mid \mathbf{x} \ge 0\}$?

Define

$$f_{\mu}(\mathbf{x}) = \mathbf{x} - \mu \underbrace{\ln(\mathbf{x})}_{"barrier"}$$

If $\mu > 0$ is small, then $f_{\mu}(\mathbf{x}) \simeq \mathbf{x}$.

We have (for $\mathbf{x} > 0$)

$$\begin{aligned} f'_{\mu}(\mathbf{x}) &= 1 - \mu \frac{1}{\mathbf{x}} & \longrightarrow f'_{\mu}(\mathbf{x}) = 0 \Leftrightarrow \mathbf{x} = \mu \\ f''_{\mu}(\mathbf{x}) &= \frac{\mu}{\mathbf{x}^2} & \longrightarrow f_{\mu} \text{ is convex!} \end{aligned}$$

	The "barrier" approach ○O●○○○○○○○○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
1D example					

	The "barrier" approach ○○○●○○○○○○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
2D example					

How can we solve

$$\begin{array}{ll} \min_{\mathbf{x}} & 2\mathbf{x}_1 + 3\mathbf{x}_2 \\ s.t. & \mathbf{x}_1 + \mathbf{x}_2 = 1, \\ & \mathbf{x}_1, \mathbf{x}_2 \geq 0 \end{array}$$

Barrier problem:

$$\min_{\mathbf{x}} \quad 2\mathbf{x}_1 + 3\mathbf{x}_2 - \mu \ln \mathbf{x}_1 - \mu \ln \mathbf{x}_2 \\ s.t. \quad \mathbf{x}_1 + \mathbf{x}_2 = 1,$$

 \longrightarrow no easy closed-form solution!

	The "barrier" approach ○○○○●○○○○○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
2D example					

	The "barrier" approach ○○○○○●○○○○○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
2D example					

	The "barrier" approach ○○○○○○●○○○○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
2D example					

	The "barrier" approach ○○○○○○○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
2D example					

	The "barrier" approach ○○○○○○○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
2D example					

	The "barrier" approach ○○○○○○○○●○	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	
Central path					

Original problem (LP)

$$\min_{\mathbf{x}} \quad c^{\mathsf{T}}\mathbf{x} \\ s.t. \quad A\mathbf{x} = b \\ \mathbf{x} > 0$$

Barrier problem (convex)

$$\min_{\mathbf{x}} \quad c^{T}\mathbf{x} - \mu \underbrace{\sum_{j=1}^{n} \ln(\mathbf{x}_{j})}_{barrier}$$

s.t. $A\mathbf{x} = b$

As μ goes to zero: the sequence of \mathbf{x}_{μ} defines a *central path*

The "barrier" approach 00000000000	Theory of IPMs ●○○○○○○○○○	Linear Algebra in IPMs 000000000	Beyond LP 00000	

1 Foreword

2 The "barrier" approach

3 Theory of IPMs

4 Linear Algebra in IPMs

5 Conclusion

6 Beyond Linear Programming

	The "barrier" approach 0000000000	Theory of IPMs ○●O○○○○○○	Linear Algebra in IPMs 000000000	Beyond LP 00000	
Closing the gap					

Primal-dual pair of LPs

KKT optimality conditions:

$A\mathbf{x} = b$	[primal feas.]	(1)
$A^T \mathbf{y} + \mathbf{s} = c$	[dual feas.]	(2)
$\forall i, \mathbf{x}_i \cdot \mathbf{s}_i = 0$	[slackness]	(3)
$\mathbf{x},\mathbf{s}\geq 0$		(4)

	The "barrier" approach 0000000000	Theory of IPMs ○O●○○○○○○○	Linear Algebra in IPMs 000000000	Beyond LP 00000	
Closing the gap					

Barrier problem

$$\min_{\mathbf{x}} f_{\mu}(\mathbf{x})$$

s.t. $A\mathbf{x} = b$

At the optimum: $\nabla f_{\mu}(\mathbf{x}) = c - \mu \frac{1}{\mathbf{x}} = A^{T} \mathbf{y}$ for some $\mathbf{y} \in \mathbb{R}^{m}$. (∇f_{μ} and gradient of constraints are linearly dependent)

Let $\mathbf{s}_j = \mu / \mathbf{x}_j$, we have

$$\begin{aligned} A\mathbf{x} &= b, \\ A^{\mathsf{T}}\mathbf{y} + \mathbf{s} &= c, \\ \mathbf{x}_j \cdot \mathbf{s}_j &= \mu, \quad j = 1, ..., n \\ \mathbf{x}, \mathbf{s} &\geq 0. \end{aligned}$$

	The "barrier" approach 00000000000	Theory of IPMs ○○○●○○○○○○	Linear Algebra in IPMs 000000000		Beyond LP 00000	
Newton's method						

Newton's method for solving f(x) = 0

Start from x_0

• $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ • ... • $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ until $f(x_n) \simeq 0$.

At each iteration:

$$0 = f(x_n) + \underbrace{(x_{n+1} - x_n)}_{\Delta x} \times f'(x_n)$$

	The "barrier" approach 00000000000	Theory of IPMs ○○○○●○○○○○	Linear Algebra in IPMs 000000000	Beyond LP 00000	
Newton's metho	d				

Newton's method for solving $f(x) = e^x - 1 = 0$

	The "barrier" approach 00000000000	Theory of IPMs ○○○○○●○○○○	Linear Algebra in IPMs 000000000	Beyond LP 00000	
Newton's methor	đ				

Idea: apply Newton method to the KKT system (1)-(4)

$$F(\mathbf{x}, \mathbf{y}, \mathbf{s}) := \begin{bmatrix} A\mathbf{x} - b \\ A^T \mathbf{y} + \mathbf{s} - c \\ XSe - \mu e \end{bmatrix}$$

so that (1)–(4) \Leftrightarrow $F(\mathbf{x}, \mathbf{y}, \mathbf{s}) = 0$.

Newton direction Δ given by

$$\underbrace{\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix}}_{\nabla F(\mathbf{x}, \mathbf{y}, \mathbf{s})} \cdot \underbrace{\begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix}}_{\Delta} = \underbrace{\begin{bmatrix} b - A\mathbf{x} \\ c - A^T\mathbf{y} - \mathbf{s} \\ \mu e - XSe \end{bmatrix}}_{-F(\mathbf{x}, \mathbf{y}, \mathbf{s})}$$
(5)

	The "barrier" approach 00000000000	Theory of IPMs	Linear Algebra in IPMs 000000000		Beyond LP 00000	
Predictor-Corrector Algorithm						

Affine-scaling direction (predictor) given by

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^T y - s \\ -XSe \end{bmatrix}$$

Centering direction towards μ -center given by

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^T y - s \\ -XSe + \mu e \end{bmatrix}$$

Predictor-Corrector algorithm: combine the two

- Predictor step: make progress towards optimality (decrease μ)
- Corrector step: improve centrality (stay close to central path)

	The "barrier" approach 00000000000	Theory of IPMs ○○○○○○●○○	Linear Algebra in IPMs 000000000	Beyond LP 00000	
Predictor-Correct	or Algorithm				

Mehrotra's Predictor-Corrector algorithm [Mehrotra, 1992]

Predictor step Δ^{aff}

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x^{aff} \\ \Delta y^{aff} \\ \Delta s^{aff} \end{bmatrix} = \begin{bmatrix} b - Ax \\ c - A^T \mathbf{y} - \mathbf{s} \\ -XSe \end{bmatrix}$$

Centering-corrector step Δ^{cc}

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta X^{cc} \\ \Delta y^{cc} \\ \Delta s^{cc} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \sigma \mu e - \Delta X^{aff} \Delta S^{aff} \end{bmatrix}$$

where:

$$\mu = \frac{1}{n} \mathbf{x}^{\mathsf{T}} \mathbf{s}, \quad \mu^{\mathsf{aff}} = \frac{1}{n} (\mathbf{x} + \alpha^{\mathsf{aff}} \Delta x^{\mathsf{aff}})^{\mathsf{T}} (\mathbf{s} + \alpha^{\mathsf{aff}} \Delta s^{\mathsf{aff}}), \quad \sigma = (\mu^{\mathsf{aff}} / \mu)^3$$

Combined direction:

$$\Delta = \Delta^{aff} + \Delta^{cc}$$

	The "barrier" approach 00000000000	Theory of IPMs ○○○○○○○○○	Linear Algebra in IPMs 000000000		Beyond LP 00000		
Predictor-Corrector Algorithm							

Figure: Mehrotra's Predictor-Corrector, in x space

	The "barrier" approach 00000000000	Theory of IPMs ○○○○○○○○○	Linear Algebra in IPMs 000000000	Beyond LP 00000	
Wrap-up					

• LP in standard Primal-Dual form

IPMs apply Newton's method to the KKT conditions

$$\begin{aligned} A\mathbf{x} &= b, \quad \mathbf{x} \geq 0, \qquad \qquad \text{[primal feas.]} \\ A^T \mathbf{y} + \mathbf{s} &= c, \quad \mathbf{s} \geq 0, \qquad \qquad \text{[dual feas.]} \\ \mathbf{x}_j \cdot \mathbf{s}_j &= \mu, \quad \forall j \qquad \qquad \qquad \text{[slackness]} \end{aligned}$$

 \rightarrow solve a few linear systems

- Polynomial-time algorithm (see [Wright, 1997])
- Very efficient on large-scale problems

The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs ●○○○○○○○○	Beyond LP 00000	

1 Foreword

2 The "barrier" approach

3 Theory of IPMs

4 Linear Algebra in IPMs

5 Conclusion

6 Beyond Linear Programming

	The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs ○●○○○○○○	Beyond LP 00000	
Motivation					

At each IPM iteration: solve a (large) linear system

$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_d \\ \xi_p \\ \xi_{xs} \end{bmatrix}$$

 \longrightarrow typically 60–90% of total time!

Two ways to make an Interior-Point faster:

- Reduce the number of iterations (better algorithm)
- Reduce the time per iteration (better linear algebra)

	The "barrier" approach 0000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs	Beyond LP 00000	
Motivation					

Initial Newton system:

$$\begin{bmatrix} 0 & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta s \end{bmatrix} = \begin{bmatrix} \xi_d \\ \xi_p \\ \xi_{xs} \end{bmatrix}$$

Substitute Δs to obtain the **Augmented system**

$$\begin{bmatrix} -\Theta^{-1} & A^{T} \\ A & 0 \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_{d} - X^{-1}\xi_{xs} \\ \xi_{p} \end{bmatrix}$$
$$\Delta s = X^{-1}(\xi_{xs} - S\Delta x)$$

where $\Theta := \mathbf{X}\mathbf{S}^{-1}$

:(Left-hand matrix is indefinite (though regularization can be used)

- :(Still costly to solve
- :) More handy if free variables and/or non-linear terms

	The "barrier" approach 0000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs ○OO●○○○○○	Beyond LP 00000	
Motivation					

Substitute Δx to obtain the **Normal equations**

$$(A \Theta A^{T}) \Delta y = \xi_{p} + A \Theta(\xi_{d} - X^{-1}\xi_{xs})$$
$$\Delta x = \Theta(A^{T} \Delta y - \xi_{d} + X^{-1}\xi_{xs})$$
$$\Delta s = X^{-1}(\xi_{xs} - S \Delta x)$$

:) $A\Theta A^T$ is symmetric positive-definite... :(... but dense if A has dense columns

$$\implies$$
 We now focus on solving $(A \ominus A^T) \Delta y = \xi$

	The "barrier" approach 0000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs ○○○○●○○○○		Beyond LP 00000		
Cholesky factorization							

We want to solve

$$\underbrace{(A\Theta A^T)}_{S} \Delta y = \xi$$

 ${\cal S}$ is symmetric positive definite, we can compute its ${\rm Cholesky}\ {\rm factorization}$

$$S = L \times L^T$$

where L is lower triangular with positive diagonal.

André Cholesky (X1895)

Available libraries: SuiteSparse, MUMPS, Pardiso, etc.

	The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs		Beyond LP 00000		
Cholesky factorization							

One dense column in $A \Longrightarrow A\Theta A^T$ is fully dense

	The "barrier" approach 0000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs ○○○○○○○●○	Beyond LP 00000	
Cholesky factori	zation				

Cholesky factor L has more non-zeros than $S \longrightarrow$ fill-in

	The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs ○○○○○○○●	Beyond LP 00000	
Wrap-up					

Linear algebra in IPMs

Newton system \longrightarrow Normal equations \longrightarrow Cholesky

- :) Numerically stable, parallelizable
- :) Readily available implementations
- :(Can consume a lot of memory

Other options:

- Exploit structure in A
- Iterative methods (e.g. conjugate gradient)

The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Conclusion	Beyond LP 00000	

Foreword

- 2 The "barrier" approach
- 3 Theory of IPMs
- 4 Linear Algebra in IPMs

5 Conclusion

6 Beyond Linear Programming

The "barrier" approach	Theory of IPMs	Linear Algebra in IPMs	Conclusion	
			0000	

Hands-on: going through a barrier log

	The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Conclusion ○○●○	Beyond LP 00000	
Conclusion						

Takeaway:

- Polynomial complexity, efficient in practice
- Robust behaviour: 20 30 iterations, regardless of problem size
- Costly linear algebra, but well-suited to parallelism

Ongoing research:

- Warm-start [Gondzio and Gonzalez-Brevis, 2015], [Engau and Anjos, 2017]
- Mixed Integer Programming
- Parallelization [Gondzio and Grothey, 2009]

	The "barrier" approach 0000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Conclusion ○○○●	Beyond LP 00000	
Questions						

Questions?

The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP ●○○○○	

Foreword

- 2 The "barrier" approach
- 3 Theory of IPMs
- 4 Linear Algebra in IPMs

5 Conclusion

6 Beyond Linear Programming

Mathieu Tanneau

	The "barrier" approach 0000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000		Beyond LP ○○○●○		
Non-Linear Programming							

(Convex) Quadratic Program:

$$\begin{array}{ll} (QP) & \min_{\mathbf{x}} & \frac{1}{2}\mathbf{x}^{T}Q\mathbf{x} + c^{T}\mathbf{x} \\ s.t. & A\mathbf{x} = b \\ \mathbf{x} \ge 0 \end{array}$$

Augmented system for QP:

$$\begin{bmatrix} -Q - \Theta^{-1} & A^{T} \\ A & 0 \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} \xi_{d} - X^{-1}\xi_{xs} \\ \xi_{p} \end{bmatrix}$$

	The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000		Beyond LP ○○○○●		
Non-Linear Programming							

(Convex) Non-Linear Program:

$$\begin{array}{ll} NLP) & \min_{\mathbf{x}} & f(\mathbf{x}) \\ & s.t. & g(\mathbf{x}) \leq 0 \end{array}$$

Augmented system for NLP:

$$\begin{bmatrix} Q(\mathbf{x},\mathbf{y}) & A(\mathbf{x})^T \\ A(\mathbf{x}) & -ZY^{-1} \end{bmatrix} \cdot \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\nabla f(\mathbf{x}) - A(\mathbf{x})^T \mathbf{y} \\ -g(\mathbf{x}) - \mu Y^{-1}e \end{bmatrix}$$

where

$$egin{aligned} \mathcal{A}(\mathbf{x}) &=
abla g(\mathbf{x}) \ \mathcal{Q}(\mathbf{x},\mathbf{y}) &=
abla^2 f(\mathbf{x}) + \sum_{i=1}^m \mathbf{y}_i
abla^2 g(\mathbf{x}) \end{aligned}$$

The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	References ●●

Engau, A. and Anjos, M. F. (2017).

Convergence and polynomiality of primal-dual interior-point algorithms for linear programming with selective addition of inequalities.

Optimization, 66(12):2063-2086.

Gondzio, J. and Gonzalez-Brevis, P. (2015).

A new warmstarting strategy for the primal-dual column generation method.

Mathematical Programming, 152(1):113–146.

Gondzio, J. and Grothey, A. (2009).

Exploiting structure in parallel implementation of interior point methods for optimization.

Computational Management Science, 6(2):135–160.

Mehrotra, S. (1992).

On the implementation of a primal-dual interior point method. SIAM Journal on Optimization, 2(4):575-601.

The "barrier" approach 00000000000	Theory of IPMs 0000000000	Linear Algebra in IPMs 000000000	Beyond LP 00000	References ••

Wright, S. (1997).

Primal-Dual Interior-Point Methods.

Society for Industrial and Applied Mathematics.